Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 14(1): 7494, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553518

ABSTRACT

Brain structural changes in Parkinson's disease (PD) are progressive throughout the disease course. Changes in surface morphology with disease progression remain unclear. This study aimed to assess the volumetric and shape changes of the subcortical nuclei during disease progression and explore their association with clinical symptoms. Thirty-four patients and 32 healthy controls were enrolled. The global volume and shape of the subcortical nuclei were compared between patients and controls at baseline. The volume and shape changes of the subcortical nuclei were also explored between baseline and 2 years of follow-up. Association analysis was performed between the volume of subcortical structures and clinical symptoms. In patients with PD, there were significantly atrophied areas in the left pallidum and left putamen, while in healthy controls, the right putamen was dilated compared to baseline. The local morphology of the left pallidum was correlated with Mini Mental State Examination scores. The left putamen shape variation was negatively correlated with changes in Unified Parkinson's Disease Rating Scale PART III scores. Local morphological atrophy of the putamen and pallidum is an important pathophysiological change in the development of PD, and is associated with motor symptoms and cognitive status in patients with PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/pathology , Magnetic Resonance Imaging , Brain/pathology , Putamen/pathology , Disease Progression , Atrophy/pathology
2.
Head Face Med ; 20(1): 8, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281028

ABSTRACT

BACKGROUND: This study aims to evaluate the difference of three-dimensional (3D) reconstructed palatal morphology between subjects with skeletal Class III and skeletal Class I in different vertical patterns using cone beam computed tomography (CBCT). METHODS: In this study, 89 subjects with skeletal Class III (49 females, 40 males; 25.45 ± 3.81 years) and 85 subjects with skeletal Class I (45 females, 40 males; 23.95 ± 4.45 years) were collected retrospectively and divided into hyperdivergent, normodivergent and hypodivergent groups. Dolphin software was used to reorient the CBCT images of these subjects. After segmenting 3D object of maxilla from the 3D skull by ProPlan software, Geomagic Studio was used to reconstruct 3D palatal morphology and establish an average 3D palatal morphology for each group. The differences of 3D palatal morphology between different groups were compared by deviation patterns on 3D colored map analysis. RESULTS: 3D colored map analysis showed the posterior part of male's palate was higher and wider than that of female's palate in skeletal Class III subjects. In skeletal Class III subjects, males with hyperdivergent pattern had a higher and narrower palate compared with hypodivergent subjects, while females with hyperdivergent had a higher but not obviously narrower palate compared with hypodivergent subjects. In the similar vertical patterns, skeletal Class III subjects had a flatter but not narrower palate compared with skeletal Class I subjects, along with a smaller palate volume. CONCLUSIONS: This method allows more intuitive between-group comparisons of the differences of 3D palatal morphology. In skeletal Class III subjects, as the vertical dimension increased, the palate tends to be higher and narrower. Therefore, the influence of vertical patterns on the palatal morphology should be fully considered in the orthodontic and orthognathic treatment of skeletal Class III subjects.


Subject(s)
Mandible , Maxilla , Humans , Male , Female , Mandible/anatomy & histology , Retrospective Studies , Cephalometry/methods , Maxilla/diagnostic imaging , Cone-Beam Computed Tomography , Palate/diagnostic imaging
5.
NPJ Parkinsons Dis ; 9(1): 111, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443179

ABSTRACT

Increasing evidence suggests that Parkinson's disease (PD) exhibits disparate spatial and temporal patterns of progression. Here we used a machine-learning technique-Subtype and Stage Inference (SuStaIn) - to uncover PD subtypes with distinct trajectories of clinical and neurodegeneration events. We enrolled 228 PD patients and 119 healthy controls with comprehensive assessments of olfactory, autonomic, cognitive, sleep, and emotional function. The integrity of substantia nigra (SN), locus coeruleus (LC), amygdala, hippocampus, entorhinal cortex, and basal forebrain were assessed using diffusion and neuromelanin-sensitive MRI. SuStaIn model with above clinical and neuroimaging variables as input was conducted to identify PD subtypes. An independent dataset consisting of 153 PD patients and 67 healthy controls was utilized to validate our findings. We identified two distinct PD subtypes: subtype 1 with rapid eye movement sleep behavior disorder (RBD), autonomic dysfunction, and degeneration of the SN and LC as early manifestations, and cognitive impairment and limbic degeneration as advanced manifestations, while subtype 2 with hyposmia, cognitive impairment, and limbic degeneration as early manifestations, followed later by RBD and degeneration of the LC in advanced disease. Similar subtypes were shown in the validation dataset. Moreover, we found that subtype 1 had weaker levodopa response, more GBA mutations, and poorer prognosis than subtype 2. These findings provide new insights into the underlying disease biology and might be useful for personalized treatment for patients based on their subtype.

6.
CNS Neurosci Ther ; 29(11): 3507-3517, 2023 11.
Article in English | MEDLINE | ID: mdl-37305965

ABSTRACT

AIMS: To detect functional connectomes of akinetic-rigid (AR) and tremor and compare their connection pattern. METHODS: Resting-state functional MRI data of 78 drug-naïve PD patients were enrolled to construct connectomes of AR and tremor via connectome-based predictive modeling (CPM). The connectomes were further validated with 17 drug-naïve patients to verify their replication. RESULTS: The connectomes related to AR and tremor were identified via CPM method and successfully validated in the independent set. Additional regional-based CPM demonstrated neither AR nor tremor could be simplified to functional changes within a single brain region. Computational lesion version of CPM revealed that parietal lobe and limbic system were the most important regions among AR-related connectome, and motor strip and cerebellum were the most important regions among tremor-related connectome. Comparing two connectomes found that the patterns of connection between them were largely distinct, with only four overlapped connections identified. CONCLUSION: AR and tremor were found to be associated with functional changes in multiple brain regions. Distinct connection patterns of AR-related and tremor-related connectomes suggest different neural mechanisms underlying the two symptoms.


Subject(s)
Connectome , Parkinson Disease , Humans , Tremor/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Brain/pathology , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging
7.
Neurobiol Dis ; 184: 106216, 2023 08.
Article in English | MEDLINE | ID: mdl-37385459

ABSTRACT

Gait impairment is a common symptom of Parkinson's disease (PD), but its neural signature remains unclear due to the interindividual variability of gait performance. Identifying a robust gait-brain correlation at the individual level would provide insight into a generalizable neural basis of gait impairment. In this context, this study aimed to detect connectome that can predict individual gait function of PD, and follow-up analyses assess the molecular architecture underlying the connectome by relating it to the neurotransmitter-receptor/transporter density maps. Resting-state functional magnetic resonance imaging was used to detect the functional connectome, and gait function was assessed via a 10 m-walking test. The functional connectome was first detected within drug-naive patients (N = 48) by using connectome-based predictive modeling following cross-validation and then successfully validated within drug-managed patients (N = 30). The results showed that the motor, subcortical, and visual networks played an important role in predicting gait function. The connectome generated from patients failed to predict the gait function of 33 normal controls (NCs) and had distinct connection patterns compared to NCs. The negative connections (connection negatively correlated with 10 m-walking-time) pattern of the PD connectome was associated with the density of the D2 receptor and VAChT transporter. These findings suggested that gait-associated functional alteration induced by PD pathology differed from that induced by aging degeneration. The brain dysfunction related to gait impairment was more commonly found in regions expressing more dopaminergic and cholinergic neurotransmitters, which may aid in developing targeted treatments.


Subject(s)
Connectome , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Connectome/methods , Magnetic Resonance Imaging/methods , Brain/pathology , Gait
8.
Ann Clin Transl Neurol ; 10(9): 1502-1512, 2023 09.
Article in English | MEDLINE | ID: mdl-37353980

ABSTRACT

OBJECTIVE: To determine whether white matter hyperintensity (WMH) volumes in specific regions are associated with Parkinson's disease (PD) compared to non-PD controls, and to assess their impact on motor signs through cross-sectional and longitudinal analyses. METHODS: A total of 50 PD participants and 47 age- and gender-matched controls were enrolled. All PD participants were followed up for at least 2 years. To detect regions of greater WMH in the PD, the WMH volume of each region was compared with the corresponding region in the control group. Linear regression and linear mixed effects models were respectively used for cross-sectional and longitudinal analyses of the impact of increases in WMH volume on motor signs. RESULTS: The PD group had greater WMH volume in the occipital region compared with the control group. Cross-sectional analyses only detected a significant correlation between occipital WMH volume and motor function in PD. Occipital WMH volume positively correlated with the severity of tremor, and gait and posture impairments, in the PD group. During the follow-up period, the participants' motor signs progressed and the WMH volumes remained stable, no longitudinal association was detected between them. The baseline occipital WMH volume cannot predict the progression of signs after adjustment for baseline disease duration and the presence of vascular risk factors. INTERPRETATION: PD participants in this study were characterized by greater WMH at the occipital region, and greater occipital WMH volume had cross-sectional associations with worse motor signs, while its longitudinal impact on motor signs progression was limited.


Subject(s)
Parkinson Disease , White Matter , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , White Matter/diagnostic imaging , Cross-Sectional Studies , Risk Factors , Disease Progression
9.
World J Gastrointest Surg ; 15(2): 287-293, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36896304

ABSTRACT

BACKGROUND: Primary malignant melanoma of the esophagus is a rare malignant tumor of the esophagus, and its combination with squamous cell carcinoma is also rare. Here, we report the diagnosis and treatment of a case of primary esophageal malignant melanoma combined with squamous cell carcinoma. CASE SUMMARY: A middle-aged man underwent gastroscopy for dysphagia. Gastroscopy revealed multiple bulging esophageal lesions, and after pathologic and immunohistochemical analyses, the patient was finally diagnosed with "malignant melanoma with squamous cell carcinoma". This patient received comprehensive treatment. After one year of follow-up, the patient was in good condition, and the esophageal lesions seen on gastroscopy were controlled, but unfortunately, liver metastasis occurred. CONCLUSION: When multiple esophageal lesions are present, the possibility of multiple pathological sources should be considered. This patient was diagnosed with primary esophageal malignant melanoma combined with squamous cell carcinoma.

10.
ACS Phys Chem Au ; 3(2): 181-189, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36968447

ABSTRACT

Excited-state intramolecular proton transfer (ESIPT) is of great importance due to the large Stokes shift emission that can be observed in some ESIPT molecules. Although steady-state spectroscopies have been employed to study the properties of some ESIPT molecules, their excited-state dynamics have not been examined directly with time-resolved spectroscopy methods yet for a number of systems. Here, an in-depth investigation of the solvent effects on the excited-state dynamics of two prototypical ESIPT molecules, 2-(2'-hydroxyphenyl)-benzoxazole (HBO) and 2-(2'-hydroxynaphthalenyl)-benzoxazole (NAP), have been accomplished by using femtosecond time-resolved fluorescence and transient absorption spectroscopies. Solvent effects affect the excited-state dynamics of HBO more significantly than that of NAP. Particularly in the presence of water, the photodynamics pathways of HBO are changed, while only small changes can be found in NAP. An ultrafast ESIPT process that occurs within our instrumental response is observed for HBO, and this is followed by an isomerization process in ACN solution. However, in aqueous solution, the obtained syn-keto* after ESIPT can be solvated by water in about 3.0 ps, and the isomerization process is totally inhibited for HBO. The mechanism of NAP is different from HBO and is determined to be a two-step excited-state proton transfer process. Upon photoexcitation, NAP is deprotonated first in the excited state to generate the anion*, which can transfer to the syn-keto* form followed by an isomerization process.

11.
CNS Neurosci Ther ; 29(7): 1776-1784, 2023 07.
Article in English | MEDLINE | ID: mdl-36852447

ABSTRACT

BACKGROUND: Dysfunction of iron metabolism, especially in substantia nigra (SN), is widely acknowledged in Parkinson's disease (PD), but the genetic influence on iron deposition remains largely unknown. Thus, in this study, we aimed to investigate potential genetic impacts on iron deposition in PD. METHODS: Seventy-four subjects, including 38 patients with PD and 36 age-matched normal controls, participated in this study. Imaging genetic association analysis was used to identify the specific influence of single nucleotide polymorphism (SNP) on iron-related quantitative traits (QT). Genetic effects on iron deposition at the disease level, SNP level, and their interactive effect were highlighted. RESULTS: Four strong SNP-QT associations were detected: rs602201-susceptibility of bilateral SN, rs198440-susceptibility of left SN, and rs7895403-susceptibility of left caudate head. Detailed analyses showed that: (1) significant iron deposition was exclusively found in bilateral SN in PD; (2) altered polymorphisms of the A allele/A- genotype of rs602201 and G allele/G- genotype of rs198440 and rs7895403 were more frequently observed in PD; (3) for rs602201, among all subjects, A- genotype carriers showed significantly increased iron content than TT genotype in bilateral SN; for rs198440 and rs7895403, G- carriers showed increased iron content than AA genotype in left SN and left caudate head, respectively; and (4) rs602201 exhibited significant SNP-by-disease interaction in bilateral SN. CONCLUSIONS: This study shows that rs602201 and rs198440 have a stimulative impact on nigral iron deposition in PD, which provides improved understanding of iron-related pathogenesis in PD, and specifically, that vulnerability to iron deposition in SN is genetic-based.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/metabolism , Magnetic Resonance Imaging/methods , Substantia Nigra/diagnostic imaging , Iron/metabolism , Polymorphism, Single Nucleotide/genetics
12.
NPJ Parkinsons Dis ; 8(1): 151, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36351910

ABSTRACT

This study aimed to investigate the cortical microstructural/macrostructural degenerative patterns in Parkinson's disease (PD) patients with mild cognitive impairment (MCI). Overall, 38 PD patients with normal cognition (PD-NC), 38 PD-MCI, and 32 healthy controls (HC) were included. PD-MCI was diagnosed according to the MDS Task Force level II criteria. Cortical microstructural alterations were evaluated with Neurite Orientation Dispersion and Density Imaging. Cortical thickness analyses were derived from T1-weighted imaging using the FreeSurfer software. For cortical microstructural analyses, compared with HC, PD-NC showed lower orientation dispersion index (ODI) in bilateral cingulate and paracingulate gyri, supplementary motor area, right paracentral lobule, and precuneus (PFWE < 0.05); while PD-MCI showed lower ODI in widespread regions covering bilateral frontal, parietal, occipital, and right temporal areas and lower neurite density index in left frontal area, left cingulate, and paracingulate gyri (PFWE < 0.05). Furthermore, compared with PD-NC, PD-MCI showed reduced ODI in right frontal area and bilateral caudate nuclei (voxel P < 0.01 and cluster >100 voxels) and the ODI values were associated with the Montreal Cognitive Assessment scores (r = 0.440, P < 0.001) and the memory performance (r = 0.333, P = 0.004) in the PD patients. However, for cortical thickness analyses, there was no difference in the between-group comparisons. In conclusion, cortical microstructural alterations may precede macrostructural changes in PD-MCI. This study provides insightful evidence for the degenerative patterns in PD-MCI and contributes to our understanding of the latent biological basis of cortical neurite changes for early cognitive impairment in PD.

13.
J Parkinsons Dis ; 12(8): 2479-2492, 2022.
Article in English | MEDLINE | ID: mdl-36336939

ABSTRACT

BACKGROUND: In Parkinson's disease (PD), excessive iron deposition in the substantia nigra may exacerbate α-synuclein aggregation, facilitating the degeneration of dopaminergic neurons and their neural projection. OBJECTIVE: To investigate the interaction effect between nigral iron deposition and PD status on brain networks. METHODS: Eighty-five PD patients and 140 normal controls (NC) were included. Network function and nigral iron were measured using multi-modality magnetic resonance imaging. According to the median of nigral magnetic susceptibility of NC (0.095 ppm), PD and NC were respectively divided into high and low nigral iron group. The main and interaction effects were investigated by mixed effect analysis. RESULTS: The main effect of disease was observed in basal ganglia network (BGN) and visual network (VN). The interaction effect between nigral iron and PD status was observed in left inferior frontal gyrus and left insular lobe in BGN, as well as right middle occipital gyrus, right superior temporal gyrus, and bilateral cuneus in VN. Furthermore, multiple mediation analysis revealed that the functional connectivity of interaction effect clusters in BGN and medial VN partially mediated the relationship between nigral iron and Unified Parkinson's Disease Rating Scale II score. CONCLUSION: Our study demonstrates an interaction of nigral iron deposition and PD status on brain networks, that is, nigral iron deposition is associated with the change of brain network configuration exclusively when in PD. We identified a potential causal mediation pathway for iron to affect disease severity that was mediated by both BGN dysfunction and VN hyperfunction in PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Image Processing, Computer-Assisted , Substantia Nigra/metabolism , Patient Acuity , Iron/metabolism , Magnetic Resonance Imaging
14.
Neuroimage ; 264: 119683, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36243270

ABSTRACT

Brain iron deposition is a promising marker for human brain health, providing insightful information for understanding aging as well as neurodegenerations, e.g., Parkinson's disease (PD) and Alzheimer's disease (AD). To comprehensively evaluate brain iron deposition along with aging, PD-related neurodegeneration, from prodromal PD (pPD) to clinical PD (cPD), and AD-related neurodegeneration, from mild cognitive impairment (MCI) to AD, a total of 726 participants from July 2013 to December 2020, including 100 young adults, 189 old adults, 184 pPD, 171 cPD, 31 MCI and 51 AD patients, were included. Quantitative susceptibility mapping data were acquired and used to quantify regional magnetic susceptibility, and the resulting spatial standard deviations were recorded. A general linear model was applied to perform the inter-group comparison. As a result, relative to young adults, old adults showed significantly higher iron deposition with higher spatial variation in all of the subcortical nuclei (p < 0.01). pPD showed a high spatial variation of iron distribution in the subcortical nuclei except for substantia nigra (SN); and iron deposition in SN and red nucleus (RN) were progressively increased from pPD to cPD (p < 0.01). AD showed significantly higher iron deposition in caudate and putamen with higher spatial variation compared with old adults, pPD and cPD (p < 0.01), and significant iron deposition in SN compared with old adults (p < 0.01). Also, linear regression models had significances in predicting motor score in pPD and cPD (Rmean = 0.443, Ppermutation = 0.001) and cognition score in MCI and AD (Rmean = 0.243, Ppermutation = 0.037). In conclusion, progressive iron deposition in the SN and RN may characterize PD-related neurodegeneration, namely aging to cPD through pPD. On the other hand, extreme iron deposition in the caudate and putamen may characterize AD-related neurodegeneration.


Subject(s)
Alzheimer Disease , Parkinson Disease , Young Adult , Humans , Parkinson Disease/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Iron , Brain Mapping/methods
15.
Netw Neurosci ; 6(2): 552-569, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35733432

ABSTRACT

Hierarchical brain organization, in which the rich club and diverse club situate in core position, is critical for global information integration in the human brain network. Parkinson's disease (PD), a common movement disorder, has been conceptualized as a network disorder. Levodopa is an effective treatment for PD. Whether there is a functional divergence in the hierarchical brain system under PD pathology, and how this divergence is regulated by immediate levodopa therapy, remains unknown. We constructed a functional network in 61 PD patients and 89 normal controls and applied graph theoretical analyses to examine the neural mechanism of levodopa short response from the perspective of brain hierarchical configuration. The results revealed the following: (a) PD patients exhibited disrupted function within rich-club organization, while the diverse club preserved function, indicating a differentiated brain topological organization in PD. (b) Along the rich-club derivate hierarchical system, PD patients showed impaired network properties within rich-club and feeder subnetworks, and decreased nodal degree centrality in rich-club and feeder nodes, along with increased nodal degree in peripheral nodes, suggesting distinct functional patterns in different types of nodes. And (c) levodopa could normalize the abnormal network architecture of the rich-club system. This study provides evidence for levodopa effects on the hierarchical brain system with divergent functions.

16.
CNS Neurosci Ther ; 28(9): 1372-1379, 2022 09.
Article in English | MEDLINE | ID: mdl-35673762

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is highly heterogeneous reflected by different affected side of body and type of motor symptom. We aim to explore clinical characteristics and underlying brain structure alterations in PD with different predominant sides and motor types. METHODS: We recruited 161 PD patients and 50 healthy controls (HC). Patients were classified into four subtypes according to their predominant side and motor type: left akinetic/rigid-dominant (LAR), left tremor-dominant (LTD), right akinetic/rigid-dominant (RAR), and right tremor-dominant (RTD). All participants assessed motor and cognitive performances, then underwent T1-weighted and diffusion tensor imaging scanning. A general linear model was used to compare neuroimaging parameters among five groups. RESULTS: Among four PD subtypes, patients of LAR subtype experienced the worst motor impairment, and only this subtype showed worse cognitive performance compared with HC. Compared with HC and other subtypes, LAR subtype showed a significant reduction in cortical thickness of the right caudal-anterior-cingulate gyrus and fractional anisotropy of the right cingulum bundle. CONCLUSIONS: We demonstrated that LAR subtype had the worst clinical performance, which the severer damage in the right cingulate region might be the underlying mechanism. This study underscores the importance of classifying PD subtypes based on both the side and type of motor symptom for clinical intervention and research to optimize behavioral outcomes in the future.


Subject(s)
Leukoaraiosis , Parkinson Disease , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Parkinson Disease/diagnostic imaging , Tremor , White Matter/diagnostic imaging
17.
NPJ Parkinsons Dis ; 8(1): 54, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35487930

ABSTRACT

Alpha-synucleinopathy is postulated to be central to both idiopathic rapid eye movement sleep behaviour disorder (iRBD) and Parkinson's disease (PD). Growing evidence suggests an association between the diminished clearance of α-synuclein and glymphatic system dysfunction. However, evidence accumulating primarily based on clinical data to support glymphatic system dysfunction in patients with iRBD and PD is currently insufficient. This study aimed to use diffusion tensor image analysis along the perivascular space (DTI-ALPS) to evaluate glymphatic system activity and its relationship to clinical scores of disease severity in patients with possible iRBD (piRBDs) and those with PD. Further, we validated the correlation between the ALPS index and the prognosis of PD longitudinally. Overall, 168 patients with PD, 119 piRBDs, and 129 healthy controls were enroled. Among them, 50 patients with PD had been longitudinally reexamined. Patients with PD exhibited a lower ALPS index than those with piRBDs (P = 0.036), and both patient groups showed a lower ALPS index than healthy controls (P < 0.001 and P = 0.001). The ALPS index and elevated disease severity were negatively correlated in the piRBD and PD subgroups. Moreover, the ALPS index was correlated with cognitive decline in patients with PD in the longitudinal analyses. In conclusion, DTI-ALPS provided neuroimaging evidence of glymphatic system dysfunction in piRBDs and patients with PD; however, the potential of assessing the pathological progress of α-synucleinopathies as an indicator is worth verifying. Further development of imaging methods for glymphatic system function is also warranted.

18.
Brain Imaging Behav ; 16(3): 1234-1245, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34973120

ABSTRACT

Tremor in Parkinson's disease (PD) has distinct responsiveness to dopamine, which is supposed not be exclusively related to dopamine deficiency but has a close relationship with cholinergic system. This phenomenon indicates that cholinergic system may be an important regulatory for distinct dopamine responsiveness of parkinsonian tremor. Through investigating the alterations of cholinergic and dopaminergic network during levodopa administration, we aimed at exploring the mechanisms of differed dopamine responsiveness of parkinsonian tremor. Fifty-two PD patients with tremor were enrolled. MRI scanning, UPDRS III and its sub-symptom scores were collected in OFF and ON status (dopaminergic challenge test). Then, patients were divided into two groups (dopamine-resistant tremor and dopamine-responsive tremor) according to the tremor change rate median score. Dopaminergic and cholinergic network were obtained. LASSO regression was conducted to identify functional connectivity with distinct reactivity during levodopa administration between groups. Afterwards, detailed group comparisons, interaction and correlation analyses were performed. The reactivity of cholinergic connectivity showed the highest possibility to distinguish two groups, especially connectivity of right basal forebrain 123 to right parietal operculum cortex (R.BF123-R.PO). After levodopa administration, connectivity of R.BF123-R.PO was decreased for dopamine-responsive tremor while which remained unchanged for dopamine-resistant tremor. The reactivity of R.BF123-R.PO was negatively correlated with tremor change rate. Reduced cholinergic connectivity to parietal operculum may be an underlying mechanism for the responsive tremor in PD and the distinct cholinergic reactivity of parietal operculum to levodopa may be a core pathophysiology for the differed DA responsiveness of tremor in PD.


Subject(s)
Parkinson Disease , Tremor , Antiparkinson Agents/therapeutic use , Cholinergic Agents , Dopamine , Humans , Levodopa/therapeutic use , Magnetic Resonance Imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Tremor/diagnostic imaging , Tremor/drug therapy
19.
Hum Brain Mapp ; 43(6): 1984-1996, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34970835

ABSTRACT

Identifying a whole-brain connectome-based predictive model in drug-naïve patients with Parkinson's disease and verifying its predictions on drug-managed patients would be useful in determining the intrinsic functional underpinnings of motor impairment and establishing general brain-behavior associations. In this study, we constructed a predictive model from the resting-state functional data of 47 drug-naïve patients by using a connectome-based approach. This model was subsequently validated in 115 drug-managed patients. The severity of motor impairment was assessed by calculating Unified Parkinson's Disease Rating Scale Part III scores. The predictive performance of model was evaluated using the correlation coefficient (rtrue ) between predicted and observed scores. As a result, a connectome-based model for predicting individual motor impairment in drug-naïve patients was identified with significant performance (rtrue  = .845, p < .001, ppermu  = .002). Two patterns of connection were identified according to correlations between connection strength and the severity of motor impairment. The negative motor-impairment-related network contained more within-network connections in the motor, visual-related, and default mode networks, whereas the positive motor-impairment-related network was constructed mostly with between-network connections coupling the motor-visual, motor-limbic, and motor-basal ganglia networks. Finally, this predictive model constructed around drug-naïve patients was confirmed with significant predictive efficacy on drug-managed patients (r = .209, p = .025), suggesting a generalizability in Parkinson's disease patients under long-term drug influence. In conclusion, this study identified a whole-brain connectome-based model that could predict the severity of motor impairment in Parkinson's patients and furthers our understanding of the functional underpinnings of the disease.


Subject(s)
Connectome , Motor Disorders , Parkinson Disease , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging
20.
J Phys Chem B ; 125(47): 12981-12989, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34797676

ABSTRACT

Excited state intramolecular proton transfer (ESIPT) has drawn much attention for its important applications in a variety of areas. Here, the steady-state and time-resolved absorption spectroscopic experiments as well as DFT/TD-DFT calculations are employed to study the photophysical properties and photochemical reaction mechanisms of 2-(2'-hydroxyphenyl) benzoxazole (HBO) and selected derivatives (compounds 1-3). Because of their larger π-conjugation framework, compounds 1-3 display red-shifted absorbance but blue-shifted fluorescence compared with HBO. A fast ESIPT process is observed directly for HBO while compound 3 has an enol/keto equilibrium type of ESIPT that exhibits dual emission. Interestingly, only the emission of the enol form is observed for compounds 1 and 2 which suggests that the ESIPT process is strongly inhibited. These results indicate the decoration with electron-withdrawing groups such as thiadiazol and pyrazine on the hydroxyphenyl ring (compounds 1 and 2) apparently suppresses the proton-transfer processes in their excited states. Whereas the ESIPT process is rarely increased for compound 3 that modified with the phenanthrol ring, because the effective conjugation is reduced for compound 3 compared with HBO. The work here provides fundamental insights that may be useful for designing novel ESIPT molecules in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...